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a 4 Z ABSTRACT

The M, I s said to be more variable then T if
l[f(X) 1 f(Y) I for a1 icreasig convex functions f . We prove

a ples rYe/ms, under random sied m , property of this ordering
and then applyin8 it to brachin processes and shock models. Other
applicatioms of tds ordering-to a population survival and to a
POISOM shock mde-are, also £iven>
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SOME RELIABILITY APPLICATIONS OF THE VARIABILITY ORDERING

by

Sheldon M. Ross and Zvi Schechner

1. A VARIABILITY RESULT

If X and X2  are random variables having respective distributions

11and 72 , then vs say that hX!-X2 (read X, is less variable than

X2) or equivalently that F1 < F2 if
V-0 W

f f(x)d1W(x) f(

for all increasing convex functions f . Some easily derived properties of

this ordering are

1. F1 _< 12  if and only if
v

Jli(x)ix 2 .fF2Zl for all a

a a

where r 1

2. If 7i <_Gii - 192,then F1 * F 2 <G1 * G2 where * denotes
v v

convolution.

We will now present a theorem concerning this ordering and in Sections

2 and 3 apply it to branching processes and shock models. Other applications

of the variability ordering to population survival models (Section 4) and to

Polson shock models (Section 5) will then be presented.

' - ,:,' ,- --,---..-...,,,.
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Theorm 1:

Let Xl'2 ... be a sequence of nonnegative independent and identically

distributed random variables and similarly Yl,2, .... Let N and N be

integer valued nonnegative random variables that are independent of the {Xi)

and (Y,) sequences. Then

N N
Xi I-Yi i >1 N >M I Xi- Y

v i -1 vi-

Proof:

We will first show that

N M

Let h denote an increasing convex function. To prove the above we must

show that

Since N >N , and they are independent of the Xi , the above will follow
v

if we can show that the function g(n) , defined by

s(n) - K[h(Xl + ... + Xn)]

is an increasing convex function of n . As it is clearly increasing since

h is and each X. is nonnegative it remins to show that g is convex,

or, equivalently, that

(2) 8(n + 1) - (n) is increasing in n.

-, .. ...,..-, - * %, . .- .. ..,W- - .. .-



To prove this let Sn X , , and note that

S(n + 1) S(n) E[h(S + Xn+,)  h

Now,

3[h(Sn + Xn+1 ) - h(Sn) I Sn t] - E[h(t + XU+1) - h(t)]

- f(t) (say).

As h Is convex, it follows that f(t) is Increasing in t . Also, as

Sn Increases in n , we see that I[f(Sn)] increases in n . But

Z[f(S )J I S(n + 1) - g(n)

and thus (2) and (1) are satisfied.

We have thus proven that

and the proof will be completed by showing that

1 vI

or, equivalently, that for increasing, convex h

But

,, i'i:.s.
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I X) ]-Z [h( Xi)] by indeednce

)E[hi( ±)] since IX .I
1 vi

I~ fu~(Yi) I x - ]

end the result follows by taking expectations of both sides of the above. I I

0'

........................................
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2. A BRANCHING PROCESS APPLICATION

Consider two Galton Watson branching processes in which individuals

at the end of their lifetime give birth to a random number of offspring.

Let n, j >1 , n > 0 denote the number of offspring of the jth

individual of the nt h generation in the ith branching process, i - 1 , 2

Suppose that the random variables X(i) , are independentjn 'j - ,n 0 n

for i - 1 , 2 and have a distribution not depending on j . In addition,

suppose that

X(l) > for all n j •
in - in thXth

Let Z(i, i 1 , 2 denote the size of the nt h generation of the i t h

process.

Proposition 2:

.f z(i) 1 1 2 then z ' 1'  > Z  or a n
Z0  lil,,h n - fonl~vI

Proof:

The proof is by induction on n . As it is true for n - 0

assume it for n . Now,

:4

4: Z(1)

": n+l =  ,n-' z12

z(2)
z(2) n (2)

and so the result follows from Theorm 1.11

.- .. :. .. r - "a- "r "r- r", - - - : - . - .,." • .
•
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eIma 4:

Let P{X-l1-a , P{X-O}- (l-0) -( (-aC P{X- 21- M-
2 ' 2

and let Y be a nonnegative, integer valued, and such that P{Y - 1) < a

and E[Y] - M . If a < M < 2 - a ,then X < Y.

Proof:

We mt show that

P{X>i} < P{Y >i) , n- 12,
i--n+l i-n+l

As EX] - E[Y = M. this is equivalent to

n n
' x > il > P{Y > i ,n -1,2,

i-I i-I

When n - 1 ,the above reduces to P{X - 0) < P{Y - 0) . This follows

since, as P{Y- 1 <P{X- 1 vif P{Y - 0} < P{X- O then it would

* not be possible for E(Y] to equal I[XJ . When n > 1 , the above is

equivalent to

n
m > P{y >i)

wc f

~which follows since E[YJ - H .1II
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3. A SHOCK MODEL APPLICATION

Suppose that shocks occur in accordance with a renewal process having

interarrival distribution G and mean pG " Each shock gives rise to a

nonnegative random damage which, independent of all else, has probability

distribution F . The damages are assumed to be additive and we let

D(t) denote the damage at time t . That is,

: Mt)

D(t) X

j where Xi is the damage of the ith shock and M(t) is the number of

shocks by t . The system is assumed to fail the first time that D(t)

exceeds some constant c . That is, the system fails at time TY, where

.A FG
'T<, -min {t : D(t) > c)

We will obtain a variability result about T F, when both F and G

are NBUS distributions, where a distribution of a nonnegative random

* variable X is said to be NBUE (new better than used in expectation) if

E[X- t x t]j IEX] for all t > 0

Letting

(c) -max {n :x + ... + X < c

Then the system will fail at the time of the N(c) + 1 shock.

Leame 5:

If F is NBUX, then

N(c) + 1 < *(c) + 1
V



-' ~ ' > ~ .
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where N *(c) is a Poisson random variable with mean c/hP where u. 1 m E[X]

Proof:

As N(c) Is just the nunber of renewals by time c of a renewal process

whose interarrival distribution is NUE with mean u. the result follows

from Theorem 3.17 on page 173 of [1].1 1

Proposition 6:

If F and G are both NBUE distributions, then

T TF,0 v 2

where E1 and E are exponential random variables having the same means

as F and G respectively.

Proof:

We can express TF,G by

N(c)+l
i TFG Yi-

where the Yi , I > 1 . are the Lnterarrival times between successive shocks.

They are thus independent and have distribution G . Now, it is well known

that an EU1 distribution G is less variable than an exponential distribu-

tion with the same mean and so

Y 1 5 'e when eI  is exponential with mean G
v

The result nov follows from Lema 5 and Theorem 1.11



10

Imartk:

*i

N (c)+l
As T , it follows upon conditioning on N (c) that

As iini

- 4 - -c/F (c () )
:T, e 1,2 _ -o if i+l

where G n(x) is the giam distribution with parameters n and 1/pG
hn

(its mean is URG) . Als, if 1 and G are NBUE, then from Proposition 6

all of the moments of TF,, are no greater than the corresponding momenta

of T 31932 . For Instance,

TT., 2 1 (* (c) + l)GI1 - (C/U + l) "G

_*1

V,
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4. A POPULATION SURVIVAL MODEL

Consider a population of m individuals each of whom is required to spend

exactly one time unit out in the field. For each day i , i - 1,2, ... , ,

there is a random variable YI which represents the probability that an indi-

vidual out on the field on day i will survive. That is, given Yi , each

Individual sent out on day I will independently survive with probability

Yi " T i Y i - 1, ... , a are assumed to be independent and Identically

A distributed random variables for which P{O < Y£ _ 1Y - 1

.A A strategy for the population is a positive integer valued vector n -

k
(n1, ... , nm) , k < a , ni - , with the interpretation that ni individuals

are sent out on day I , i - 1, ... , k . Let N(j) denote the nuber of indi-

viduals that survive under strategy n.

Proposition 7:

Proof:

As the variability ordering Is closed under convolution, it clearly

suffices to prove that if n individuals are sent out on a given day, then

the number of survivors is more variable than It would be if the n mdi-

viduals were sent out on separate days. Hence, we must show that for any

convex function f

3 f(I)( 1jY a - ZI)()Z() (1 -I I(
59 10' J 140

Howeve, It follows from the following liea that the function

I ,~~~~~~~~~~~~~~~.€ .....-. .-................, .... ................. :....-........-..........-..-...-....-...-,.-
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g I, f(, )( )n p ( - pI

1-0 Ip P1-

- is convex in p and so the above follows from Jensen's Inequality.11
o'
4

Lea 8:

Let X1 ,X2 , ... be Independent Bernoulli random variables with

P(X i - 1) - p . If f is a convex function, then. for any constant c ,

9 X, + is a convex function of p

Proof:

The proof Is by induction. Mhen n - I we mst show that pf(c + 1) +

(1 - p)f(c) is convex in p , which is Idiate. Assming the result for

n - 1 we then have, upon conditioning on

a U1Z f X+ = ps f Xi + c + + (I Xi pCsx +

51 Hence If we let

c (p) - [ xt + c

we muot show that

h(p) pgc+l(p) + (1 - p)g (p)

Is convex. Differentiation with respect to p yields

h"(p) - 2 (g;+1 (p) - t(P)) + Pi4(p) + (1 - c(p)

___ * . ;: .;:v -.
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U

Now, g"(p) and 44.(p) are nonnegative by the induction hypothesis.

Also, as f' is Increasing in x , we see that

S/n-i a)]

is Increasing In a and thus S;+,(p) ge ('P) >0 .Hence,

h"(p) _.0

which proves the result. ji

Rsmrk:

Since [N(n)] - A[M for all strategies n. it follo,., as in

Corollary 3, that P{N() - 0) is miniized by the strategy (1,1, ... , 1) .

'1

N]

4

ir/ ' l; N 2.?7: -; ; ;;: ,,O A ..- --a',,'.../ ,. ,'.:, '.:,;' -. , ; ' .,h .'"*. . -' ' \ . . . .
. -.; ; ... , - ,
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5. A POISSON SHOCK HDOL

Suppose that unobserved shocks hit a device in accordance with a Poisson

process having rate X . At some tine the device is inspected and if n

shocks have occurred by that tine a cost f(n) is incurred, where f is an

increasing, convex function. There are two inspection plans that can be

employed-one of which .ispects the device after a random tine I and the

other after a random time Y , and we are interested in determining which

plan leads to a smaller expected cost.

Proposition 9 shows that if X is more variable than Y , then it leads

to a greater expected cost.

Proposition 9:

Let {N(t) , t > 0) be a Poisson process with rate A and let X and

Y be nonnegative random variables that are indeent of the Poisson

process. Then

v v

Proof:

Let f be a convex, Increasing function and suppose,, without loss of

.3generality,, that f(o) .0 . Let

A(n) f f(n + 1) - f (n)

R(t) I f f(n) Qt)n/n,
n-0

and note that 6(n) > 0 -and Increasing In n by assumption. Now,

....................... ..........

a...) - f.n ) --f



15
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Z[f(N(X))] - j e-tB(t)dX(t)

where Fx  is the distribution function of I . Hence, it suffices to show

that s(t) " e-t(t) is a convex increasing function of t • Now,

9t'(t) - -xe-tH(t) + e-"tr (t)

- t [f(n + 1) f(n)] +ltn/n1
n-0

- .IAEt)

Now, A > 0 and so g' > 0 . Also, as N(t) Is stochastically Increasing in

t and A is increasing, It follows that 3[A(N(t))] Is increasing in t

and so g Is convez.ll

Remark:

Propoeition Is not true for a general renewal process. It is clearly

not true for a deterministic renewal process. (If all interarrivals equal 1

and X uniform (1.9,2.1), Y-a 2 . then X >Y but N(X) I N(Y)). Even
V at

if the Lterarrival distribution has a decreasing failure rate, Proposition 9

need not be true. For a counteremle, suppose the interarrival distribution

Is

.(z) -p( - + (1 - p)(1- , 0 < p < 1 , A'1 0 A2

To compute K[N(t)] , Imagine that at each renewal a coin, having probability

p Of landing heads, Is flipped. If head appears, the next Interarrival Is

ezpametial with rate A1 and if tails, It is exponential with rate A2
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p

I we lat A(t) if the rate at t is A, then {A(t) ,t> ) is

a 2-state Karkov chain which leaves state 1 (2) to go to state 2 (1) at a

ezponintial, rate jq ( 2p) where q - I - p . Also, P(A(O) - 1)- p.

elmes, it follows (see [4], page 221) that

(A(t) - 1) - -It + (I a -It

where

" q •+ 2P

Banco,

tpq(1 1  12 Ax A
f P{A(s) -lids- 2 2 1 -At) + 2 t

0o

We can un comute I[N(t)] as foll.s:

113lt)0 - 1 PA(s) - lids + A2 JP{As) - 2ld

0 0SPq(k I - A 2) 2 I

x2 i

Therefore, [IN(t)] Is of the fom

ZIN(t)]-A(l - a c t ) + It A 1 )- II,0, 9 0.

Renea I we ltat be uniforms on (1- C, 1+ ) ,0 < C , them
-q
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1.+c

I[N(XC)] - A- A f =C-dz+B

1-C

2 A[l + 2• (e cc)] + B

Hence, ZI[(XC )] decreases in e when e is near 1. However, _ x 2

1 v

Wlmeer 0 < C 2  < C 1  < 1 . .

0p

4'

-.-' -- ' -'..................................................................................................................................".-" ." .'- .



(1] Barlow, R. and F. Proschan, STATISTICAL THEORY OF RELIABILITY AND

_ LIFE TESTING, Holt, Rinehart and Winston, (1975).

[2] Freedman, D. and R. Purves, "Timid Play is Optimal II,"' Annals of-Mathematical Statistics.-Vol. 38, pp. 1284-1285, (.7

[~31 Goodman, L. A., "How to Minimiz-e or Mtaximize the Probabli ties of
Extinction In a Galton-Watson Process and in Some Related

.., Multiplicative Population Processes," Annals of Mathematical
"; Statistics, Vol. 39, pp. 1700-1710, (1968).[4] Bose, S. M.a I.rDUCTIOn TO PROBABILITY MODES, Second Edition,

ALdemc E res, (1980).

[2 remn .adR uy. TmdPa .OtmlI, naso

!ahmtclSaitcVl 8 p 2418,(iY

[3 odmL . Nvt iiieo aiietePoaiiiso

a r - : Extinction, % in , . ., ' a alo-WtonPocs an i. Some-....... Related. . ,. ..


